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ABSTRACT

A computer simulation of a BPSK Direct Sequence Spread Spectrum system
has been developed to investigate the effects of adaptively filtering stable
tone interferers covering twenty percent of the communication band.
Preliminary results for the swept tone interfering signal are also presented
and shows that the block filter is effective when the tones are stable, but
degrades in performance as the tone sweeps quickly across the band. To cumbat
the non-stationary signal environment, either shorter block lengths may be .
required or the use of recursive algorithms that are based on gradient or
least square concepts may have to be examined. .
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1.0 PURPOSE

This report summarizes the work done to date in the area of adaptive
excision of interfering signals in Direct Sequence Spread Spectrum systems.
It is based on a paper by Ketchum and Proakis [1]. The report fulfills two
objectives:

(i) it provides a summary of some adaptive filtering techniques as

applied to signal excision, and

(2) presents some preliminary results of work done within the

Communications EW section in this area.

2.0 BACKGROUND

In Direct Sequence Spread Spectrum Communication systems, the processing
gain may not be sufficient to reduce the effect of strong interferers in the
band. Thus, one way to enhance system performance is to incorporate into the
receiver an adaptive filter capable of suppressing the interferer sufficiently
so that communication can resume at a tolerable bit error rate.

Generally, there are two types of adaptive filter. One is based on
processing the data in blocks of size N, and updating the adaptive filter
coefficients based on these N samples. The other type is recursive and
involves updating the coefficients with every data sample.

The former type works effectively in "stationary" signal environments,

i.e., environments in which the interferer is stable for some duration.
However, performance may deteriorate if the interferer has some non-stationary
characteristics, e.g., a swept frequency. The degree of deterioration would
depend on the block size and filter order. The latter type of filter can to
some extent handle non-stable types of interferers; but its effectiveness
depends on the convergence rate of the filter coefficients relative to the
non-stationary characteristics of the interfering signal: e.g., a slow

converging filter would have difficulty in tracking a fast swept tone. There
are a variety of these types of filters, some of which have faster convergence
rates than others.

The primary focus of this report is on the former, i.e., the block
processing type of adaptive filter, with passing reference later in the report
to the recursive filter.

3.0 BLOCK PROCESSING ADAPTIVE FILTERS

Two types of block processing filter basically exist. They are of the

non-parametric and parmetric classes.

The non-parametric filters use the data samples x(nTs), where Ts is the
Nyquist interval, of a realization of a stochastic time series x(t) directly
to determine the power spectral density (PSD) of the time series, from which

an adaptive filter can be designed.

%-"%"%
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The parametric filters, meanwhile, use the data samples to estimate the

parameters of a proposed model for the PSD. Proposed models might be •

(i) all pole, also termed Autoregressive (AR) or Maximum Entropy
Method (MEM) types

(ii) all zero, also termed Moving Average (MA) J,

(iii) a combination of both poles and zeroes (ARMA).

3.1 Non-Parametric Filters

An example of the non-parametric approach is one based on the FFT. Here

the FFT is used to determine the PSD from the incoming stochastic time series

using say,

(i) the Welch technique (6] which averages a series of FFT's on the
raw data samples x(nT5 )9

(ii) the periodogram technique which involves determining the Fourier
transform of the autocorrelation of the time series.

If the PSD is denoted by P(f) and is an even and real function a
non-realizable whitening filter can be designed having the transfer function

HIM 5-M%Hl(f) = (1)

Sampling this function M points (where M is odd) around the unit circle, and
delaying the signal by (M-1)/2 samples, leads to the realizable linear phase
digital filter with transfer function

2_ rM-l1 k. 2_

Hl(k) I e-J M 1 2  (2)

P [! Rs]

where R. is the sampling rate, equivalent to the chip rate of the
pseudo-random sequence. Thus the inverse DFT of H(k) will provide the impulse
response h(n), of a transversal filter with M taps and the property that
h(n) = h(M-l-n).

Figure 1 shows conceptually how such a filter is created; and Figure 2
indicates how it fits into a system after the signal has been sampled.
Finally, Figure 3 contains an example of a 5 tap linear phase filter, with the
center tap being the reference because of the (M-l)/2 sample delay through the
filter.

%_'P -. r-.r V
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X(t)

t

One realization of a stochastic analog signal.

(a)

X(nTs)

-. 't=nT s

Stochastic time series obtained from (a).
(b)

Rs/2 Rs f

One-side repeated power spectral density function with
folding frequency Rs/2. Note that P(f) =P(R s -f).

(c)
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P (k)

M-1

Sampled version of power spectral density function.

(d)

M-1k

Frequency response of adaptive filter.

(e) ',

h(n) : ,,%

-T[1,111 11 I

M-1 n

Inverse Discrete Fourier Transform (DFT) of spectrum in (e),.,.-,
leading to a linear phase FIR filter with deiay (M-I)/2.

(ef) -".%
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FIGURE 1 (cont'd) %
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3.2 Parametric Filters 0,

The parametric filters are different from the non-parametric ones in the
sense that the data samples x(nTs ) are used to estimate certain parameters of
a proposed model for the PSD of the time series. One such example, the one
considered in this report, is the all pole model, also termed the
Autoregressive (AR) or Maximum Entropy type. Here, the data is used to
estimate the position of the poles. Examples of how this is actually done
will be discussed later.

If a stochastic process can be modelled as AR, then, if white noise is
passed through the all pole filter, the output will be the spectrum of the
time series (Figure 4) Sxx(z), with autocorrelation function rxx(n).

The denominator A(z) of the transfer function H(z) is 0

A(z) = I - alz -  - A 2 z
- 2 

- .... - aMz-M 3(a)

Thus, the sampled signal is .5

A'*

x(n) = ai x(n-l) + a2 x(n-2) +. ..... + aMx(n-M) + w(n) 3(b)

where w(n) is a sample of white noise. Note too that equation (3b) suggests
x(n) is being "predicted" by M weighted past samples, with prediction error
w(n). The problem then becomes re-phrased to one involving linear prediction
concepts, which AR, MA and ARMA processes are based upon [3].

The problem is to calculate the constants or weights ai, i = 1,2 .... M
using the available data samples. Knowledge of these constants allows one
indirectly to obtain an estimate of the poles from the transfer function

p.

H(z) = 2 (4)
AT-) l-al z-L-a2z -.-.... aMz-' 0

There are a variety of ways to calculate the coefficients ai . First
consider the theoretical case in which the data samples x(n) are random
variables with known autocorrelation function rxx(n). Multiplying equation %
(3b) by x(n-k) and taking the expectation of both sides yields (assuming x(n)

V J. ... "

%'-
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is a stationary, zero mean Gaussian process)

rxx(k) = alrxx(k-l) + a2 rxx(k-2) + ... + aMrxx(k-M) + Rwx(k) (5)

Now Rwx(k) = 0,(Etw(n)x(n-k)j = 0) since the noise sample at time 'n' is
uncorrelated with the past output x(n-k), k ) 0, (the system we are
considering is causal so that inputs at 'n' have no effect on past outputs).
Thus we have a set of M equations and M unknowns ai, i = 1, 2 ...... M, i.e.,

aI rxx(0) + ... + am rxx(l-M) - rxx(l) (6)

al rxx(M-l) + ... + am rxx(O) = rxx(M)

These are known as the Yule-Walker equations. Since rxx(n-k) = rxx (k-n),
their coefficient matrix is Toeplitz in form. In matrix notation (6) becomes

=~xa r (7)

where

Exx= rxx(O) rxx(l) ........ rxx(M-l) , a aI , r = rxx(l)
rx(l) a2  .

rxx(l)
L rxx(M-l) rxx(2) rxx(O) J *a L rxx(M)

I

If the discrete autocorrelation function is known exactly at various time
lags 'k', then the exact ai can be calculated from (7). Realistically,
however, the exact autocorrelation function is not known and, therefore, must

be estimated using sample realizations of the time serkes. A typical formula
to determine the sample autocorrelation is .j.

I

N-k

xx(k)= Z x(n) x(n-k) (8) ,%
n=l

.%

-j', % %-e% % 1W -
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Therefore, the matrix equation (7) becomes

S

= (9)

where the ' refers to estimate. The ii have now become estimates for the
exact ai and, hence, indirect estimates for the poles in equation (4).

Because it is Toeplitz, the coefficient matrix j can be inverted
efficiently compared to standard techniques such as Gaussian elimination and
Cholesky LU decomposition. This efficient algorithm is known as the
Levinson-Durbin algorithm [2].

e
Box and Jenkins have cautioned [2] that using equation (8) with the

Levinson-Durbin algorithm may lead to numerical stability problems; but
Makhoul [3] suggested that this is not a problem in practice.

Another method of estimating the AR parameters is known as the Burg
technique [4], which does not require prior estimates of the autocorrelation
function of the time series. In this algorithm, it is assumed that x(n) can
be estimated (or predicted) by a weighted sum of M previous samples and a V%
weighted sum of M future samples using the same weights ai in both directions, . .

thus implying a stationary series (e.g., Figure 5, M = 3). The forward and
backward prediction errors are minimized with respect to the Mth coefficient
aM and, because of the nature of the Levinson-Durbin algorithm, is used to
generate the coefficients aMl, ..., al.

A third approach to estimating the filter weights is via the least
squares method. It is also one which has been implemented in a simulation.
The implementation is based on a paper by Barrodale and Erickson [51 and is
similar to Burg's algorithm. The basic difference is that all coefficients ai
are determined through minimizing the sum of squares of the forward and
backward residuals. The technique will now be summarized.

Given a time series xl, x 2 , . . . . , xN , assume that xt can be estimated by
xt which is a linear combination of M past values of xt, (the forward
prediction problem), i.e.,

M
xt = Z xt- j , t - M + 1, M + 2, ... , N (10)

j =1

There is an error et between xt and X t. Tke parameters are determined

by minimizing the residual sum of squares E ;2. Thus
t=M+l t

..

%.:,
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M

xt= + t = M + 1, ... , N (11)j =l + et

In matrix notation (11) becomes

e = -a (12)

where

S= 'x -.... Xi ,a = aly = "xeM1 ,l

xM+l XM g2 xM+2 eM+2

XN-l XN-2 .... XN-M aM N .eN

A least squares solution a* is defined as any a which minimizes the
residual sum of squares S = ;T;, where T represents the transpose. For an
over determined set of equations (i.e., more equations than unknowns), a least
squares solution will exist and also will be unique if the rank of X is full
(the columns of R are linearly independent). Applying this condition to (12),
S is minimized when RT; = 0 (the columns of R are orthogonal to e), and so the
LS solution a* must satisfy the equation

T= 0 (13)

or RT Ra = (14)

The LS solution is therefore characterized by the MxM system of normal
equations (i.e., the solution a* yields a residual vector e* that is normal to
the column space of R, hence the terminology).

The result in (14) has been based on the forward prediction of xt
(equation (9)) on its M past values. One can also predict in the backward

direction given a set of data xl, x2, ... , xN, by starting with xN, XN-l,

XN_2, ... , i.e.,
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M
XNM = £ aj XNM+j (15)

j=l

M
xl E aj xl+j

and define the backward resid.al et = xt - xt. The LS solution to the

backward prediction problem is

RT R a* = RT y (16)

where

X2x XM+l, a a l, Y X
x3 x4a

.xNM+l XNM+2 XN .aMp XNM

As in Burg's algorithm, it is assumed that xt can be estimated by a
weighted sum of M previous observations and a weighted sum of M future
observations (because of the stationary assumption) using the same weights aj
in both directions (see Figure 5). Thus, the LS problem can be described by
the 2(N-M)xM matrix equation

_ = X-Xa (17a)

or

= a (17b)

The LS solution to (17a) satisfies the MxM system of normal equations

XT X a* = XT x (18)

;!;L el . .. .% ...
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where X and y have been defined in (17b). Substituting for X and y yields the
equation

(RTR + RT R)a* = +. (19)

where R, y and X, y have been defined in (12a) and (16) respectively.

The paper from which the above summary was extracted [5], contains a
FORTRAN program which efficiently solves for a*, the LS solution in (19),
given the sampled data sequence xI , x2, ..., xN . The FORTRAN program puts no
restriction on N per se (other than the fact that N must be selected so that
an over determined set of equations is obtained), since the solution to (19)
is carried out in a recursive manner. However, the basic thrust of any
Maximum Entropy technique to solving for the coefficients ai is to obtain
accurate estimates with as few data samples as possible. Reasonable estimates
can be made with N being 50 to 100 samples. Ketchum and Proakis [1] suggest
that one can use fewer than 50 data samples.

In summary, whichever AR parametric method is selected, the net result is
an estimate for the coefficients ai, i=l, 2, ..., M in equation (4). However,
what has not been addressed is the problem of what value of filter order M to
choose. Suffice it to say that there is a technique to choose M optimally for
the methods discussed above [3]. It has been found though, from [1] that the
filter order does not affect performance very much, i.e., M=4 appears to work
just as well as a filter order of 15 for the case of a dense cluster of stable
tone interferers in the communication band. For this reason, preliminary work
herein has arbitrarily selected a fixed filter order of 4 simply to explore
the kind of results that would be obtained.

Referring back to Figure 4, we can see that if aw2/A(z)A(z- 1 ) adequately
represents the PSD of x(n), then A(z) can be interpreted as a whitenini filter
once the ai are determined (see Figure 6) where A(z) 

= 1-al z_1 - a2z -

a3z- 3 - a4z
-4 for the case of M=4, i.e., the impulse response is h(n) = 6(n) -

al 6(n-l) - a2 6(n-2) - a3 6(n-3) - a4 6(n-4). It is an FIR filter as shown
in Figure 7 which does not have linear phase since the impulse response is not
symmetric. Note too that there is no delay through this filter.

4.0 INPUT SIGNAL CHARACTERISTICS

At this stage, a few comments will be made about the input signal x(n).
It basically consists of three components:

(i) the direct sequence signal s(n)
(ii) Gaussian nnise n(n)
(iii) the interference signal i(n).

% % % %.

% %~
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x~n) wan

xn Sw(n) 2

SXX(Z A(Z)A(Z-1)

System representation of a whitening filter for an AR process

FIGURE 6

x(n) Z1X(n-1) Z1x (n-2) Z1x(n-3) Z1X(n-4)

1.0 -, -a -a3-a 4

Five tap transversal filter of a whitening filter .

FIGURE 7
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The parametric method (and also the non-parametric method as well) is based on
the premise that the autocorrelation function of x(n) is dominated by the
autocorrelation function of the interference if:

(i) the signal x(n) is sampled at the chip rate and
(ii) we confine ourself to within the PN sequence period. '

These two points should be elucidated.

First assume that the PN sequence is infinite in extent which implies it
has an autocorrelation function as shown in Figure 8 where Tc is the chip
duration. If this autocorrelation function is sampled at the chip rate, the
following sampled autocorrelation function (ACF) in Figure (9) is obtained.
This ACF has a flat power spectral density. (Realistically, Rss(n) will not 0
be as shown in Figure 9, but will have some non-zero autocorrelation values at
nTc, n = 1, 2, ... etc., leading to a non-flat spectrum and hence some code
cancellation or distortion in the adaptive filtering process.)

Second, the additive noise is white Gaussian and has an ACF consisting of
the Dirac impulse function whose spectrum is flat. 0

Third, the interference will have an ACF extending beyond + Tc and
therefore will have a non-flat PSD. Figure 10 shows the sum of the three
ACF's and their resultant PSD's for the case of a single stable tone.
Ideally, the notch filter in Figure 7 should attenuate the tone in Figure %
10(b) quite significantly. This can be seen intuitively.

For example, referring to Figure 7

w(n) = x(n) - a I x(n-l) - a2 x(n-2) - a3 x(n-3) - a4 x(n-4) (20a)

= [s(n) - aI s(n-l) - a 2 s(n-2) - a 3 s(n-3) - a4 s(n-4)] + (20b)

" [n(n) - al n(n-l) - a2 n(n-2) - a3 n(n-3) - a4 n(n-4)] +

+ [i(n) - al i(n-l) - a 2 i(n-2) - a 3 i(n-3) - a4 i(n-4)] +

It can be seen from the third term in square brackets in (20b) that if i(n) is a -,

reasonably good linear combination of its past four values, then the interference
will be cancelled to a large extent. Similarly, if s(n) and n(n) cannot be well
represented by their past values then little cancellation will occur.

0
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-Tc 0 Tc  0

Autocorrelation function of an infinite random sequence.

FIGURE 8

I 
° .

SRss(n)•

.2Tc -T c 0 Tc 2Tc  n..

Sampled autocorrelation function of Figure 8, 
;'

sampled at the chip rate.
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Rss(T) 1  )

-Tc 0 Tc  T

Autocorrelation function of white noise, random PN sequence

and sinusoidal interference

FIGURE 10 (a) S'

Tone -.

Noise + Signal

"fi 0f i f, --

Fourier transform of the autocorrelation function in Figure 10 A)

FIGURE 10 (b)
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5.0 SIMULATION RESULTS

5.1 Introduction

In the paper by Ketchum and Proakis (1] the performance of block

non-parametric and parametric techniques were compared. *9

(i) Non-parametric

- the Welch FFT method was used to estimate the PSD from a sampled

time series 2',.
- the resultant PSD was sampled and its reciprocal calculated
- the impulse response of the filter was determined thus resulting

in tap weights for a linear phase FIR filter

(ii) Parametric (three techniques were compared)

- the autocorrelation method
- the Burg algorithm
- a Least Squares algorithm

In the non-parametric case many more samples (roughly 900) were required
to obtain a good, sharp estimate of the interfering signal, whereas reasonably

good results were obtained with 50 samples (the lowest number examined) using
any of the parametric methods.

Two types of interfering signal were examined:

(i) multiple stable tones (empirical results for 10 tones occupying 20%
of the band and theoretical results for 100 tones)

(ii) narrowband colored noise obtained by passing white Gaussian noise
through a Butterworth filter with a sharp cutoff.

The paper (I] did not address the non-stationary interferer, but did make
passing reference to the fact that the effectiveness of any of the block
techniques examined would depend on the block size.

To handle this other type or interferer, other adaptive schemes could
also be examined whose filter coefficients are continually being updated.

Examples include:

(i) Widrow-Hoff LMS algorithm [91
(ii) Fast Kalman [101
(iii) Recursive Least Squares techniques [III

7~-
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There has been some work on the application of (i) to the interference
rejection problem [8]. However, it suffers to some extent on convergence
rate, i.e., the faster the tone sweeps the more problems it encounters. This
suggests examining (ii) which has a faster convergence rate than (i). No
references seem to exist on its application to interference rejection. There
appears to be potential in (iii). Thus, based on this preliminary assessment
of the application of (i) to (iii) to the interference rejection problem
(particularly for swept tone or FM type interfering signals), there appears to
be some scope for exploratory work.

5.2 Experimental Set-Up

Two adaptive schemes have been implemented on the computer (PDP 11/60 and
FPS API2OB). The scheme selected is block parametric processing: the Least
Squares algorithm and the autocorrelation method, in particular equations (19)
and (7).

The simulation is based on [i]. The following assumptions are made:

(i) the channel has infinite bandwidth

(ii) the energy/chip is unity and the amplitude is +1
(iii) the processing gain ranges from 20 to 60
(iv) the signal-to-interference ratio per chip is -20 dB
(v) the incoming signal at the receiver is sampled at the chip rate.

f..,

Let us examine the implications of i) to (v):

- item i) theoretically implies that no chip distortion results
(square chips are assumed). A random sequence of + I's has an ACF
which is triangular and a PSD which is a (sinc) 2 function (Figure 11).

- (ii) implies that Tc = 1. This then implies that Rc = i, i.e., the
chip rate.

- (iii) implies the energy/bit is equal to the processing gain, since
the number of chips/bit is equal to the processing gain.

- (iv) suggests that for a single tone interferer of amplitude B, SIR =
-20 = 10 log (signal power/chip)/B 2/2 = 10 log (Ec/Tc)/(B2/2).
This implies the sinusoidal amplitude is 14.14.

- (v) implies we do not have to worry about the Nyquist criterion,
which applies to finite bandwidth systems and is used in designing
communications systems to minimize inter-symbol interference. In the >,,
simulation model no inter-symbol interference occurs and there is no
path delay occurring over the channel. Finally, sampling at the chip 7

rate, Rc, implies a Nyquist bandwidth of Rc/ 2 . Since there is no
filtering anywhere (except for the adaptive filter which comes
later), any interfering signals outside the range Rc/ 2 will be %
aliased back into -Rc/ 2 ( f ( Rc/2. Therefore, all interfering
signals are kept in the 0 ( f ( Rc/ 2 range. Also, since Tc = I in
the simulation Rc/ 2 = 1/2.

. . ... . . . . . .. . . .4 .
% % % e- Z- .
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In one of the simulation examples 10 tones are equally spaced. The
frequency range is 0.0 to 0.1 Hz (Figure 12), implying the tones cover 20% of
the band. The equation for the interference is

10
i(t) = 14.14 Z cos(21 fkt + k) (21)

k=1

where k is a random phase between 0 and 21. The sampled interference is

10
i(nTc) = 14.14 E cos(2yr fk nTc + 9k) (22)

k=l

At this point a few words should be said about the signal to noise ratio
per bit, Eb/No.

The processing gain, say, is PG, and since the energy per chip is I and .
there are PG chips/bit, Eb = PG. The single-sided noise power spectral
density No (Fi ure 13) is 2an2 , where an2 is the noise power. Therefore,
Eb/No = PG/ 2anI. Thus for a given Eb/No in dB, the noise variance an2 can be
determined. For BPSK and no interference the error rate is

*.d J.

I 1 PG
Pb - erf = - erfc (23)

2 N 2 %2an 2

We now have all of the variables to generate a time series of N points,
i.e.,

10
x(nTc) = + 1 + n(nTc) + 14.14 Z cos(2lrfknTc + ek) (24)

k=1

where n(nTc) is a sample of noise from a Gaussian distribution with variance

an2 determined from above, i.e., from Eb/No = PG/2an 2.

A block diagram of the simulation set-up is shown in Figure 14. The
simulation generates 200,000 chips which implies 10,000 bits (PG = 20) for
Eb/No's ranging from -10 dB to +15 or 20 dB. Before preliminary results are
presented, some spectral plots based on the autocorrelation method will be

presented.

%-.
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6

. 3Rc -2Rc -RC 0 Rc  2Rc 3Rc .'"

Power spectral density function of infinite random sequence.

FIGURE 11

V

0 .1 .2 .3 .4 .5 f¢

Single-sided spectrum showing 10 interfering stable tones occupying INN
20% of the band. The tones are separated in frequency by IN

.0111 Hz and are of equal amplitude. IV-'

FIGURE 12 '
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One-sided noise PSD...-

FIGURE 13
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5.3 Test Results

The upper curve in Figure 15(a) is a spectral estimate of a single tone
interferer located at 0.25 Hz and is based on a 4-pole model, i.e.,

1

H(w) = (25)
1 - ale-JW - a 2e-Jz' - a 3e-

3't - a4 e-J
4w

where the numerator has been equated to I for now. The coefficients ai were
estimated using the autocorrelation technique (equation (9)) with the
Levinson-Durbin algorithm. The correlation matrix was generated using data
form equation (24) for a single tone and a noise variance an2 of 0.01, which
corresponds to Eb/No = 30 dB when the processing gain is 20.

The lower curve in Figure 15(a) is the spectral estimate obtained by
cascading the model H(M) with its matched filter H*(w) as shown in Figure 16.
The upper curve in Figure 15(b) shows the frequency response of the adaptive
filter without its matched filter, i.e.,

F(w) = 1 = l-ae-jw - a 2e-j
2w - a 3e-j3 - a4 e-J "

H(W) (26)

The inverse transform of equation (26) is the hypothetical finite impulse
response

f(n) = i - al 6(n-l) - a2 6(n-2) - a3 6(n-3) - a4 6(n-4) (27)

in Figure 17. One can design an adaptive filter using these weights, but
better performance will be obtained by cascading f(n) with its matched
response f*(4-n) = f(4-n) [11; the result will lead to a linear phase filter
with weights calculated from the convolution of f(n) and f(4-n) shown in
Figure 18. The notch filter for the single sinusoid case is the bottom curve
in Figure 15(b). Note too that the combined adaptive filter with its matched
filter introduces a delay in the output, which must be kept in mind when
correlating the filtered output with the PN sequence.

Figure 19 shows plots of AR spectra for the case of ten equi-amplitude i
tones ranging in frequency from 0.2 Hz to 0.3 Hz, thus covering 20% of the
band. The frequency spacing between sinusoids is approximately 0.0111 Hz.
The spectrum plotted in Figure 20(a) was for the time series in Figure 19, but

modelled as AR-10: 50 samples were used to estimate the pole positions.
Figure 20(b) is AR-40 using 200 time samples. Figure 21 shows two spectral
samples based on an AR-4 model and 2 different blocks of 50 data samples used
to estimate the filter coefficients.

% % %% %%
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Figure 22 compares the theoretical Eb/No vs Pb (bit error rate) for the
AWGN channel with the simulation program developed on the PDP1I/60 and FPS
AP-120. One sample run produced the results indicated by 'o'. A processing
gain of 20 was used and 200,000 data samples were generated implying 10,000
data bits (there are 20 samples/bit since the sampling rate is at the chip
rate). The number of bit errors were determined at the various Eb/No's shown,
by taking the ratio of the number of bit errors to the number of bits
transmitted. No interference was added to the channel. It should be noted
too that the results in Figure 22 and subsequent figures were obtained with
only one run of the simulation program, not several as it theoretically should"',1
be for Monte Carlo simulations. The results, however, differ negligibly from 6,
run to run for the examples considered herein. yy

Figure 23 shows the bit error rate performance when 10 equi-amplitude -

tones ar- present, spanning 20% of the band. The frequency range is from 0.0 0

to 0.1 Hz, with a frequency spacing of 0.0111 Hz between tones. There are
four curves presented and were generated under the following conditions:

(i) processing gain of 20
(ii) number of samples/block for estimating the filter coefficients was

100 using the autocorrelation technique and Levinson-Durbin A
algorithm

(iii) the filter order was 4.

One noteworthy point about the results in Figure 23 is the improvement in
performance when the adaptive filter with its matched filter are used to
attenuate the interference. Figure 24 shows frequency response samples of the
adaptive filter with (lower curve) and without (upper curve) its matched
filter calculated for the following conditions:

i) PG=20
(ii) number of points/block = 100
(iii) AR-4 model
(iv) Autocorrelation method

(v) Eb/No = 0 dB which implies On2 = 10.24.

The effect of a stable tone and a strong swept tone on bit error rate is
shown in Figure 25. The results confirm that the batch processing technique
starts to falter as the tone sweeps faster. 100 data points per block were
used to generate the filter coefficients. There is a slight improvement when
20 data points per block are used as shown in Figure 26.

6.0 SUMMARY

A computer simulation of a BPSK DS/SS system has been developed to
investigate the effects of adaptively filtering stable and swept tone
interferers in the communication band.

% 0
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Spectral estimate of a single tone located at .25 Hz,
using the autocorrelation method. 5

FIGURE 15(a)
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Notch filter based on spectral estimate in Figure 15(a).
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/5

Block diagram of 4-pole spectral estimator,
without the matched filter.

FIGURE 16(a)

w(n) HM x(n)_ e-j4" H, (W) y(n-4)

Block diagram of 4-pole spectral estimator
with its realizable matched filter. %

FIGURE 16(b)
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f (n)

01 2 34 n
Hypothetical impulse response of a 4-zero filter.

FIGURE 17

f(4-n)

01 2 34 n

Impulse response of the realizable matched filter of Figure 17.

FIGURE 18(a)
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0.0 0.1 0.2 0.3 0.4 0.5 0

FREQUENCY

AR spectrum of a time series consisting of a pseudo-random sequence, white tv
Gaussian noise and 10 equi-amplitude tone interferers spanning 20% of the band 0
(0.2 to 0.3 Hz). The tones are spaced 0.0111 Hz, the noise variance On2 is
0.01 and the processing gain is 20. The model for the time series is AR-4.

The pole estimates were obtained via the autocorrelation method and

Levinson-Durbin algorithm, using 50 samples from the time series.

FIGURE 19
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Similar to Figure 19 except the model is AR-10.

FIGURE 20 (a)
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This shows the variability in the spectra from data block to data block. The
conditions used to produce these spectra are the same as those in producing 9.
the upper curve in Figure 19.
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The report focusses on the block processing type of adaptive filter. It ,'

shows that this kind of filter is effective when the tones are stable, but

starts to degrade in performance as the tone sweeps quickly across the band.

This suggests that fewer samples per block or other types of filters should be

examined, such as the

(i) Widrow-Hoff LMS type
(ii) Fast Kalman type
(iii) Recursive least squares filters.
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A comparison of one run of the simulation model ('o') to the

theoretical bit error rate for the AWGN channel, no ,5
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The upper and lower curves refer to single realizations
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The effect on bit error rate of a non-stable interferer is exhibited here.

-(x) stable tone at 0.0 Hz, no adaptive filter
-(o) stable tone at 0.0 Hz, adaptive filter and its matched filter

included.
-(A),(n),(A) tone sweeping back and forth between 0.0 and 0.5 Hz at

0.0001, 0.001, and 0.01 Hz/sec., respectively; adaptive filter and
matched filter included. a.
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FIGURE 25
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The conditions in this figure are similar to those in Figure 25, the only 0
difference being that 20 data points/block were used to generate the filter
coefficients.

-(x) stable tone with adaptive filter
-(o) no adaptive filter
-(A),(O3),(A) tone sweeping back and forth between 0.0 and 0.5 Hz at

0.0001, 0.001, and 0.01 Hz/sec., respectively; adaptive filter and
matched filter included.

FIGURE 26
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spread spectrum, - . -.. -.

spectrum estimation
computer simulation
autoregressive processes
maximum entropy method
least squares
adaptive filtering

signal excision
Weiner filtering
linear prediction
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